
Chase++: Fountain-Enabled Fast Flooding in
Asynchronous Duty Cycle Networks
Zhichao Cao∗, Jiliang Wang∗, Daibo Liu†, Xin Miao∗, Qiang Ma∗, Xufei Mao‡

∗School of Software and TNLIST, Tsinghua University, China
†School of CSE, University of Electronic Science and Technology of China, China

‡WIN Lab, Dongguan University of Technology, China
{caozc, jiliang, miao, maq}@greenorbs.com, {dbliu.sky, xufei.mao}@gmail.com

Abstract—Due to limited energy supply on many Internet of
Things (IoT) devices, asynchronous duty cycle radio management
is widely adopted to save energy. Flooding is a critical way to
quickly disseminate system parameters to adapt diverse network
requirements. Capture effect enabled concurrent broadcast is
appealing to accelerate network flooding in asynchronous duty
cycle networks. However, when the length of flooding payload
is long, due to frequently unsatisfied capture effect construction,
the performance of concurrent broadcast is far from efficient.
Intuitively, senders can send short packet that contains partial
flooding payload to keep the efficiency of concurrent broadcast.
In practice, we still face two challenges. Considering packet loss, a
receiver needs an effective way to recover entire flooding payload
from several received packets as soon as possible. Moreover,
considering diverse channel state of different senders, how a
sender chooses the optimal packet length to guarantee high
channel utilization in a light-weight way is not easy.

In this paper, we propose Chase++ a Fountain code based
concurrent broadcast control layer to enable fast flooding in asyn-
chronous duty cycle networks. Chase++ uses Fountain code to
alleviate the negative influence of the continuous loss of a certain
part of flooding payload. Moreover, Chase++ adaptively selects
packet length with the local estimation of channel utilization.
Specifically, Chase++ partitions long payload into several short
payload blocks, which are further encoded into many encoded
payload blocks by Fountain code. Then, with temporal and spatial
features of the sampled RSS (received signal strength) sequence,
a sender estimates the number of concurrent senders. Finally,
according to the estimated number of concurrent senders, the
sender determines the optimal number of encoded payload blocks
in a packet and assembles the encoded payload blocks as lots of
packets. Then, concurrent broadcast layer continuously transmits
these packets. Receivers can recover original flooding payload
after several independent encoded payload blocks are collected.
We implement Chase++ in TinyOS with TelosB nodes. We further
evaluate Chase++ on local testbed with 50 nodes and Indriya
testbed with 95 nodes. The improvement of network flooding
speed can reach 23.6% and 13.4%, respectively.

I. INTRODUCTION

More and more IoT applications have appeared in many
scenarios such as Industry 4.0 [1], smart city [2], smart
home and so on. In an IoT application, tens to thousands of
devices are used to collect sensory data. For the feasibility
of IoT deployment, some kinds of wireless techniques (e.g.,
Lora, ZigBee, Bluetooth, WiFi) are usually utilized to forward
packets. In sensory data collection, some system settings (e.g.,
radio management [3], time synchronization [4], binary image
[5]) of every node usually need timely update to adapt diverse

Receiver

Broadcaster

D

DCCA Preamble Packet

D D D D D

Listen Tail

sleep
interval

Fig. 1. Illustration of LPL radio management.

system requirements. Network flooding serves as the basic
function which disseminates control packets to every node in
whole network wide. During the update of system settings,
considering system reliability and consistency, the flooding
packet must be quickly forwarded to every node.

When nodes keep their radio always on, flooding becomes a
connected dominating set problem with the constraints of link
quality and conflict. Under this scenario, many structured [6]
[5] and structureless [7] [8] [4] network flooding protocols
have been widely adopted. However, due to the limited on-
board energy resource [9], duty cycle radio management is
widely used to save energy. Low Power Listening (LPL, e.g.,
Box-MAC [10], Zisense [11]) is a widely used asynchronous
duty cycle control mechanism. In LPL as shown in Figure 1,
each node periodically turns on its radio to sample signals
(i.e., Clear Channel Access (CCA)) with a preconfigured
interval (called sleep period). If a signal is detected, the
node further keeps its radio on for a while (call listen tail).
Otherwise, the radio is directly turned off. The schedule to
turn radio on (called sleep schedule) is not synchronized
among different nodes. To meet the rendezvous with every
neighbor, a broadcaster needs continuously send the same
packet (called preamble packet) for whole sleep period. The
significant difference (i.e., asynchronous sleep schedule, long
time channel occupation) between LPL broadcast and always
radio-on broadcast keeps the directly inherited LPL network
flooding schemes far from efficient.

To solve this urgent problem, Chase [12] has proposed a
capture effect based LPL concurrent broadcast to accelerate
network flooding. With Chase, each node can immediately
forwards the received flooding packet without any channel
access backoff. In this way, each node cannot miss the earliest
chance to receive flooding packet. Unfortunately, we observe

that the listen tail quickly increases with the increasing of
preamble packet length (Section II-B). However, to shorten
flooding rounds, the preamble packet length is usually set
long during bulk data (e.g., binary image, batched system
settings) dissemination. Consequently, the efficiency of Chase
is dramatically degraded under these scenarios.

The root cause is the inefficient capture effect construction
when preamble packet length becomes large. An intuitive idea
is that instead of setting whole flooding payload as a long
preamble packet, the flooding payload can be split as several
different short payload blocks. Each preamble packet only
contains several short payload blocks to shorten its length
so that the efficiency of capture effect construction is kept.
Hopefully, a receiver can collect all short payload blocks to
recover the flooding payload. However, it faces two challenges.
One is it may need long time to collect all short payload
blocks due to packet loss. The other is that too small preamble
packet may underutilize the channel capacity of concurrent
broadcast due to accumulated idle time during preamble packet
broadcast. Thus, the optimal preamble packet length varies for
different senders due to diverse channel state. For each sender,
how to efficiently measure channel state to select the optimal
preamble packet length in a light-weight way is not easy.

In this paper, we propose Chase++, a Fountain code based
concurrent broadcast control layer to enable fast flooding in
LPL networks. First, Chase++ splits long flooding payload into
some short payload blocks. It further uses Fountain code [13]
to encode these short payload blocks as a set of rateless
short payload blocks (called encoded payload block). Second,
Chase++ develops a new method that uses the temporal and
spatial features of locally sampled RSS sequence to infer
the number of concurrent senders. Then, a sender combines
different number of encoded payload blocks to adjust the
preamble packet length to adapt the number of concurrent
senders. Finally, senders send these preamble packets that
consist of different encoded payload blocks for a whole sleep
interval. A receiver can recovery the flooding payload after
enough encoded payload blocks are received. The rateless
property of Fountain code can avoid long collection time
incurred by continuously loss of certain payload blocks.

We implement Chase++ on TelesB nodes in TinyOS 2.1.2.
We further conduct extensive experiments to evaluate its
performance on two real testbeds. The results show the flood-
ing performance of asynchronous duty cycle networks can
be greatly improved. Our contributions are summarized as
follows:
• We propose Chase++, which first introduces a Fountain

code based LPL concurrent broadcast control to improve
the flooding performance in asynchronous duty cycle
networks.

• We propose a novel and light-weight method to enable a
sender to count the number of concurrent senders. This
method can be easily extended to infer other information
of channel occupation.

• We implement Chase++ on TelosB nodes in TinyOS
2.1.2. We further evaluate its performance on two real

S1 S2

R

D1 D2

D1’

IPPI

t

D2’

D3

D3’

IPPI

IPPI IPPI

D S1’s Preamble Packet D’ S2’s Preamble Packet

D3

Corrupted Corrupted Valid

D1’ D2’

Fig. 2. Illustration of random IPPI mechanism in Chase.

testbeds with different network density and scale. The
results show the efficiency of Chase++.

The rest of paper is organized as follow. Section II shows
the preliminary and limitation of state-of-the-art LPL network
flooding. Next, Section III gives the detailed system design.
Section IV shows the implementation issues and the evaluation
results. Section V introduces the related work. We conclude
our work in Section VI.

II. EMPIRICAL STUDY

Chase [12] proposes capture effect based LPL concurrent
broadcast to allow all nodes can immediately forward the
received flooding packet without any backoff. With high
spatial reuse of concurrent broadcast, LPL flooding delay is
significantly reduced. Next, we briefly illustrate the mecha-
nisms used by Chase. Then, we conduct experiments to show
the preamble packet size problem of Chase.

A. Chase Flooding

With capture effect, a receiver can successfully decode the
strongest signal which fulfills both time requirement (i.e., the
strongest signal comes no 160µs later than other signals) and
spatial constraint (i.e., the strongest signal must be 3dB higher
than the sum of other signals). In Chase, random IPPI (Inter
Preamble Packet Interval) and adaptive tail extension (ATE)
are two main mechanisms to enable concurrent broadcast.
All senders distributedly use random IPPI to construct valid
preamble packets that fulfill the time requirement of capture
effect at the receiver.

Figure 2 illustrates the random IPPI mechanism. S1 and S2
are two concurrent senders. R is a receiver in the commu-
nication range of both S1 and S2. For easily understanding
the function of random IPPI, we currently assume the RSS
(received signal strength) of S1 is 7dB higher than S2 at R.
Hence, the spatial constraint is satisfied and R can receive
preamble packet of S1 when it fulfills the time requirement
of capture effect. When R turns its radio on, D1 is the first
heard preamble packet from S1. However, D1’ comes much
earlier than D1. R fails to receive D1. Then, S1 and S2 wait a
random IPPI to send their next preamble packet D2 and D2’.
The maximum IPPI is bounded by the time of LPL signal
sampling [11]. With different IPPI waiting, the temporal order
varies between different pairs of heard S1’s and S2’s preamble
packets. As shown in Figure 2, D2 is also corrupted, but D3
(called valid preamble packet) is valid.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 20 30 40 50 60 70 80 90 100

Ta
il

Le
ng

th
 (m

s)

Payload Length (Bytes)

Fig. 3. The distribution of tail length under different packet length with
Chase.

Moreover, if the spatial constraint is unsatisfied (i.e., the
RSS difference between S1 and S2 is less than 3dB at R), R
cannot successfully receive any overlapped preamble packet.
When R does not receive any preamble packet in the passed
listen tail, it further uses ATE to detect whether concurrent
broadcast exists according to the RSS sequence sampled in
the listen tail. If concurrent broadcast is detected, R keeps its
radio on for another listen tail. Under this scenario, listen tail is
not further extended until a non-overlapped preamble packet
is received. In this way, Chase guarantees the reliability of
LPL concurrent broadcast.

B. Preamble Packet Size Problem

When flooding payload becomes large, Chase tends to
use long preamble packet that contains flooding payload as
much as possible. However, this strategy may incur two
negative effects. First, because the maximum IPPI is bounded,
the impact of random IPPI on temporal order adjustment
among the preamble packets of different senders becomes
limited when preamble packet is long. A valid preamble
packet is difficult to construct in a short listen tail. Second,
long preamble packet increases the overlapping probability so
that enlarges the number of listen tail extension with ATE.
In real IoT deployments, there are usually more than two
concurrent senders during network flooding. More frequent
channel access of multiple senders further aggravate these two
negative influences.

To verify our inference, we conduct experiments on a local
testbed with 50 TelosB nodes. We set the transmission power
of TelosB CC2420 radio to 2. The number of neighbors of
different nodes are in the range of [12, 27]. We use default
parameters of LPL and Chase as shown in [12]. We evaluate
the distribution of listen tail length under different payload
length. Given a payload length, we collect listen tail length of
all 50 nodes in 100 times flooding as the dataset.

The experimental results are shown in Figure 3. We can
see that listen tail length indeed monotonically increases with
the increase of payload length. More specifically, the median
and 75% value of listen tail is increased by 3.6 and 5.9
times when the payload length increases from 10 bytes to

100 bytes, respectively. The different increasing rate is caused
by different number of concurrent senders for different nodes
on local testbed. When the number of concurrent senders is
low, listen tail is short and the increasing rate is relatively
low. In contrast, listen tail is long and the increasing rate is
relatively high when the number of concurrent senders is high.
Thus, when preamble packet length becomes large, the time
of capture effect construction becomes high. Considering the
multi-hop relay of network flooding, long per-hop listen tail
significantly increases the end-to-end delay.

The question is that can we develop an optimal scheme
of preamble packet generation to enhance the efficiency of
concurrent broadcast?. Intuitively, we can partition flooding
payload as several short payload blocks. A preamble packet
only contains some of them to achieve efficient concurrent
broadcast. However, we still face two challenges in practice.
First, a receiver must receive multiple preamble packets to suc-
cessfully recover original flooding payload. This may further
increase delivery delay due to the frequent loss of a particular
short payload block. Hence, a coding/decoding method should
be designed to mitigate the long-tail problem [5]. Second,
because different senders face the different number of concur-
rent senders, to optimize local channel utilization of capture
effect based concurrent broadcast, the optimal preamble packet
length varies for different senders. Moreover, to avoid the extra
overhead and delay of network coordination, determining the
optimal preamble packet length with only local knowledge is
not a trivial problem.

III. SYSTEM DESIGN

In this section, we illustrate the detailed design of Chase++.
Specifically, Chase++ contains four modules to achieve fast
LPL concurrent broadcast based network flooding. After a
flooding command is issued, payload partition module and
fountain coding module together convert long flooding payload
to some short encoded payload blocks. The encoded payload
blocks do not rely on the reception of any individual block
so that the block assembling delay is optimized. Moreover,
according to sampled RSS sequence, concurrent sender esti-
mation module estimates the number of concurrent senders as
local channel state. According to estimated channel state and a
novel metric of channel utilization, adaptive preamble packet
generator module generates the optimal preamble packets for
LPL concurrent broadcast. In this way, the length of preamble
packet is locally determined without any extra coordination
delay. Figure 4 illustrates an example of Chase++ design.
The input of Chase++ is a flooding payload indicated as P .
Lp indicates the length of P . The output of Chase++ is a
set of preamble packets {Pr1, P r2, ..., P rm}. These preamble
packets are further sent in turns with random IPPI.

A. Payload Partition

In this module, Chase++ sequentially partitions whole
flooding payload to k non-overlapped short payload blocks
{p1, p2, ..., pk}. The size of all short payload blocks is the
same and indicated as lp. In Figure 4, LP and lp is 70

P, Lp = 70 bytes

p1 p2 p3 p4 p5 p6 p7

Payload Partition
10 bytes

r1 r2 r3 rn-1 rn

Fountain Coding
10 bytes

……

Preamble Packets

Pr1 Prm

rn-2

……

Flooding Payload

RP Combination
3 batch 30 bytes

Fig. 4. An Example of Chase++ design.

and 10, respectively. Thus, 7 payload blocks {p1, p2, ..., p7}
form the original flooding payload. It is possible LP cannot
be divided by lp. Then, Chase++ sets k as dLp

lp
e and fills

the redundant bytes of the last short payload block pk with
0. Any node can recover the original flooding payload by
collecting all k short payload blocks. It is a tradeoff to
choose lp. A preamble packet contains multiple encoded short
payload blocks (Section III-D). Small lp provides fine-grained
control of preamble packet length, but needs to receive more
encoded payload blocks to decode all k short payload blocks
in Fountain code [13] (Section III-B). We discuss the selection
of lp in Section IV.

B. Fountain Coding

In this module, Chase++ converts k short payload blocks
to n encoded payload blocks with Fountain code [13]. Given
the set of short payload blocks {p1, p2, ..., pk}, Fountain code
randomly selects several short payload blocks and encodes
them as an encoded payload block. The length of an encoded
payload block is lp the same with a short payload block. For
the efficient computation of short payload block encoding,
bitwise XOR operation (i.e., Galois Field GF(2)) is usually
adopted to encode the randomly chosen short payload blocks.
As shown in Figure 4, r1 is the bitwise XOR of p1 and p2.
With different combination of short payload blocks, a set of
encoded payload blocks {r1, r2, ..., rn} (n > k) are generated.
Every short payload block is guaranteed to be contained
in some encoded payload blocks. Instead of sending the
short payload blocks, senders continuously send the preamble
packets that contains these encoded payload blocks. After w
(w ≥ k) encoded payload blocks are successfully received, a
receiver can recover all short payload blocks with Gaussian
Elimination (GE) or sum-product algorithm. The recovery
does not rely on the reception of any individual encoded
payload block, Thus, the long-tail problem is avoided.

The key problem of Fountain code is how to randomly select
short payload blocks for encoding an encoded payload block.
Random Linear (RL) [13] and LT [14] codes are two common

schemes. The difference between RL code and LT code is the
tradeoff between the encoding/decoding cost and the number
of encoded payload blocks needed for successful decoding. In
RL code, every encoded payload block has 50% probability to
contain any short payload block. The expected encoding cost
per encoded payload block is k

2 bitwise XOR operations of
two lp length bytes. Thus, the encoding cost of RL code is
O(k2). With GE, the decoding cost is O(k3). According to
[13], RL code has high probability to recovery all k short
payload blocks with k encoded payload blocks when k is
larger than 10.

In comparison, LT code uses a sparse random scheme
to select short payload blocks. According to a distribution
ρ(d) = pd, an encoded payload block contains d short payload
blocks with probability pd. Due to the non-uniform and sparse
encoding, besides GE, the light-weight sum-product algorithm
(i.e., Belief Propagation) [13] can be used for decoding. How-
ever, more encoded payload blocks are needed for decoding.
In LT code, the distribution ρ(d) is a critical issue to enable
using less encoded payload blocks for decoding. The robust
Soliton distribution [13] is designed for large number of short
payload blocks. SYNAPSE++ [15] and Pando [5] use another
efficient distribution for small number of short payload blocks.

Both RL and LT codes can be utilized for encoding in
Chase++. To reduce the extra delay incurred by encoding,
Chase++ uses a fixed part of IPPI to compute several new
encoded payload blocks of the next preamble packet. In
comparison with LT code, RL code needs longer fixed part
of IPPI to encode so that loses certain temporal diversity
among the preamble packets of different senders. This may
degrade the construction of capture effect. On the other hand,
considering the limited number of total short payload blocks,
the computational cost of GE is tolerable. Moreover, rather
than sum-product algorithm, GE can recover all short pay-
load blocks when the coefficient matrix of received encoded
payload blocks have full rank. Hence, Chase++ uses GE to
decode. In comparison with LT code, RL code needs less
received encoded payload blocks to construct the full rank
coefficient matrix. We further compare the performance of RL
and LT codes in Section IV.

As shown in Figure 4, given the n encoded payload blocks,
Chase++ sequentially batches λ (i.e., 3) encoded payload
blocks as m preamble packets. With a large λ, the preamble
packet length is long so that a receiver may need more time
to receive a preamble packet. On the other hand, according to
the property of Fountain code, the receiver needs to receive
less preamble packets to recover the original flooding payload
when λ is large. Base on the situation of local channel
utilization, senders balance this tradeoff to determine the
optimal batch size λ. The next two modules determine the
detailed techniques.

C. Concurrent Sender Estimation

In this module, a sender utilizes temporal and spatial
features of the locally sampled RSS sequence to estimate
the number of concurrent senders, which indicates the local

-100

-95

-90

-85

-80

-75

-70

-65

-60
R

S
S

RSS sample

(a) 2 concurrent senders

-100

-90

-80

-70

-60

-50

-40

R
S

S

RSS sample

(b) 5 concurrent senders

Fig. 5. Examples of the RSS spatial feature under different number of
concurrent senders.

channel utilization. Figure 5 shows two examples of the RSS
spatial feature when 2 and 5 concurrent senders exist. The floor
RSS (called noise floor, about -99dB) indicates the background
noise. The RSS samples, whose values are higher than noise
floor, are the concurrent preamble packets of different senders.

The spatial feature indicates that due to the spatial diversity
of different senders, the corresponding RSS values are usually
different. With the concurrent preamble packets of different
senders, a receiver can observe different RSS values. In
Figure 5(a), two RSS values (i.e., -74dB, -61dB) are observed
to distinguish the two concurrent senders. In Figure 5(b),
the RSS values of different senders can be classified into 5
categories (i.e., -43dB, -54dB, -58dB, -69dB, -83dB). Based
on this observation, Chase++ splits the RSS sequence as
several RSS segments. In each RSS segment, the difference
of RSS samples is less than a threshold κ. Then, Chase++
clusters all RSS segments to several categories as the rough
estimation of the number of concurrent senders.

It is possible that the RSS values of several senders may
be close. These senders cannot be recognized through their
spatial feature. In each RSS category, the temporal features
(i.e., on-air time, the interval between adjacent RSS segments)
of RSS segments are different when multiple senders exist.
Specifically, given the maximum preamble packet on-air time
Tmax
on−air and the minimum interval between adjacent preamble

packets IPPImin, if the on-air time of a RSS segment is larger
than Tmax

on−air or the interval of adjacent RSS segments is less
than IPPImin, multiple concurrent senders exist. Chase++
further uses the temporal features to refine the estimation of
the number of concurrent senders. The detailed estimation
algorithms are illustrated as follow.

1) RSS Sequence Segmentation: {s1, s2, ..., sn} indicates
the sampled RSS sequence. Chase++ splits it as w segments
{Seg1, Seg2, ..., Segw} and uses start point Gi and end point
Ei (i.e., sample index in RSS sequence) to depict the ith

RSS segment Segi. Chase++ sequentially checks each RSS
sample to create the start point set and end point set. Chase++
adds the first RSS sample as the 1st start point G1. For any
sj(j ∈ [1, n − 1]), if the absolute difference between sj and
sj+1 is larger than a threshold κ, j is the end point of the
current RSS segment (Equation 2) and j + 1 is the start point
of the next RSS segment (Equation 1). Chase++ adds the last
RSS sample sn as the wth end point Ew. Chase++ sorts the

elements of G and E in ascending order.

G = {Gj |j ∈ [1, w], |sGj−1 − sGj | > κ} (1)
E = {Ej |j ∈ [1, w], |sEj − sEj+1| > κ} (2)

Give the start point Gi and end point Ei of the ith

RSS segment Segi, its RSS sequence is depicted as
{sGi , sGi+1, ..., sEi}.

Algorithm 1 RSS Segment Clustering Algorithm
Input: RSS sequence {s1, s2, ..., sn}, start point set G and end point set E

of w RSS segments.
Output: Nc categories of RSS segments.
1: for Each RSS segment Segi, i ∈ [1, w] do
2: smed

i = Median({sGi
, sGi+1, ..., sEi

})
3: end for
4: Apply Algorithm 2 (threshold constraint clustering) to divide {smed

1 , ...
, smed

w } to N ′c categories Crss = {Crss
1 , Crss

2 , ..., Crss
N′

c
}.

5: for Each category i, i ∈ [1, N ′c] do
6: if Give a threshold ∆,

∑
j∈Crss

i
|Segj | < ∆ or given noise floor

snoise, smed(Crss
i) < snoise. then

7: Remove Crss
i from Crss.

8: end if
9: end for

10: return The remained Nc categories in Crss.

2) RSS Segment Clustering: The RSS segment clustering
algorithm is shown in Algorithm 1. From line 1 to line 3,
Chase++ uses median RSS value as the spatial feature of
a RSS segment. For the ith RSS segment, its median RSS
value smed

i is the median value of {sGi
, sGi+1, ..., sEi

}. At
line 4, Chase++ divides {smed

1 , ... , smed
w } to N ′c categories

with Algorithm 2. The ith category of RSS segments is
indicated as Crss

i . For each RSS segment that belongs to
Crss

i , Crss
i uses the corresponding segment index in set

{Seg1, Seg2, ..., Segw} to represent it. If all segments of a
category have few RSS samples, Chase++ treats this category
as an outlier. Further, Chase++ removes the category of noise
floor segments. As shown from line 5 to line 9, if the total RSS
samples of all segments of a category is less than a threshold
∆ or the median RSS value of a category is less than noise
floor, Chase++ removes it from clustering set Crss. Then, the
remained Nc categories is obtained.

According to the spatial features of RSS segments, Al-
gorithm 2 uses a threshold (i.e., the median RSS difference
between two categories is larger than this threshold) to au-
tomatically cluster them to N ′c categories. Chase++ sets the
clustering RSS threshold as κ the same with RSS sequence
segmentation. In line 1, Algorithm 2 initiates the category set
Crss as empty. From line 2 to line 16, it traverses all RSS
segments. For each RSS segment, if Crss is empty, Chase++
creates a new category and adds it to Crss. Otherwise, if the
RSS difference between its median RSS value and the median
RSS value smed(Crss

i) of the ith category Crss
i is within the

range [−κ, κ], Chase++ adds this RSS segment to Crss
i . If

the RSS segment does not belong to any category, Chase++
creates a new cluster and adds it to Crss.

According to the spatial feature, Algorithm 1 and 2 together
output category set Crss with Nc categories. Nc is the rough
estimation of the number of current senders. In the ith category

Algorithm 2 Threshold Constraint Clustering Algorithm
Input: spatial feature of RSS segments {smed

1 , ... , smed
w }, RSS difference

threshold κ.
Output: Category set Crss with N ′c categories.
1: Set Crss as empty.
2: for Each segment Segi, i ∈ [1, w] do
3: if Crss is empty. then
4: Create segment set {i} as Crss

1 and add it into Crss.
5: else
6: Currently, there are x categories in Crss.
7: for Each category Crss

j , j ∈ [1, x] do
8: if |smed

i − smed(Crss
j)| < κ then

9: Add i to Crss
j , break the loop.

10: end if
11: end for
12: if Segment Segi belongs to no category. then
13: Create {i} as a new cluster Crss

x+1, add it to Crss.
14: end if
15: end if
16: end for
17: return Category set Crss.

Crss
i , it contains N i

c RSS segments. Their corresponding index
in set {Seg1, ..., Segw} is {idxCi

1 , ..., idxCi

Ni
c
}. Hence, the

corresponding start and end points are {G
idx

Ci
1
, ..., G

idx
Ci
Ni

c

}

and {E
idx

Ci
1
, ..., E

idx
Ci
Ni

c

}, which are sorted in ascending order.

3) Temporal Feature Checking: For each category,
Chase++ uses the temporal features of the clustered RSS
segments to check the potential multiple senders that provide
similar RSS. Algorithm 3 shows the detailed procedure. In line
1, Chase++ initiates the number Nt of potential concurrent
senders as 0. Chase++ uses RSS segment length and the RSS
segment interval as the temporal features. In line 4, for the
jth RSS segment of the ith category Crss

i , its RSS segment
length l

idx
Ci
j

equals E
idx

Ci
j

− G
idx

Ci
j

+ 1. In line 5, if the

(j+1)th RSS segment exists, the RSS segment interval π
idx

Ci
j

is G
idx

Ci
j+1

− E
idx

Ci
j

. For each category, Chase++ calculates
the temporal features of every RSS segment as shown from
line 3 to line line 8. In a category, if the ratio β between the
maximum RSS segment length and the maximum on-air time
Tmax
on−air is larger than 1 (line 9 and line 10), it is possible the

preamble packets of β senders are overlapped. Thus, Chase++
adds β to Nt (line 11). Otherwise, if there exists a RSS
segment interval is less than the minimum preamble packet
interval (line 12), Chase++ conservatively adds an extra sender
to Nt (line 13). Finally, after checking the temporal features
of all categories, Chase++ obtains the extra number Nt of
concurrent senders.

Combining rough estimation Nc and refined estimation Nt,
the estimated number of concurrent senders is Nc +Nt.

D. Adaptive Preamble Packet Generator

In this module, Chase++ defines an empirical metric CCR
(Channel Capacity Redundancy) to determine the batch size
λ. CCR reflects the remained channel resource that allows
how long preamble packet can be transmitted. IPPImax in-
dicates the maximum interval between two preamble packets.
IPPImax is the total channel resource to enable concurrent

Algorithm 3 Temporal Feature Checking
Input: Maximum on-air time Tmax

on−air , minimum preamble packet interval
IPPImin, Nc categories of RSS segments {Crss

1 , Crss
2 , ..., Crss

Nc
}.

Output: The number Nt of concurrent senders detected by temporal features.
1: Initiate Nt as 0.
2: for Each category Crss

i , i ∈ [1, Nc] do
3: for Each RSS segment Seg

idx
Ci
j

, j ∈ [1, N i
c] do

4: l
idx

Ci
j

= E
idx

Ci
j

−G
idx

Ci
j

+ 1

5: if j + 1 ≤ N i
c then

6: π
idx

Ci
j

= G
idx

Ci
j+1

− E
idx

Ci
j

7: end if
8: end for
9: β =MAX{lCi

idx
Ci
j

, ∀j ∈ [1, N i
c]}/Tmax

on−air

10: if β > 1 then
11: Nt = Nt + β.
12: else if ∃j ∈ [1, N i

c], πCi

idx
Ci
j

< IPPImin then

13: Nt = Nt + 1.
14: end if
15: end for
16: return Nt

broadcast. As shown in Equation 3, given the estimated
number Nc+Nt of concurrent senders, if Nc+Nt is not zero,
CCR is to multiply the ratio between IPPImax and Nc +Nt,
which indicates the average channel resource for each sender,
by a coefficient δ, which considers the spacial efficiency of
capture effect. The large δ indicates good spacial diversity.

CCR = MAX(δ × IPPImax

Nc +Nt
, Tmax

on−air) (3)

We will discuss the δ selection in Section IV. The maximum
CCR equals to the maximum preamble packet on-air time
Tmax
on−air. When CCR is large, it allows to transmit long

preamble packet. When Nc+Nt is zero, CCR is set as Tmax
on−air.

Given the radio bandwidth B, total size lmac of MAC header
and tail, and payload block length lp, the batch size λ can be
calculated as Equation 4.

λ = MAX(1, bCCR− lmac ×B
lp ×B

c) (4)

The minimum λ equals to 1. As shown in Figure 4, after
obtaining the batch size λ, Chase++ further batches λ encoded
payload blocks for every preamble packet.

E. Reliable Coverage

Considering the possible preamble packet loss, after all
neighbors have stopped broadcasting, a node may fail to
collect enough encoded payload blocks to recover the original
flooding payload, or even worse, not receive any preamble
packet at all. To keep a reliable coverage, Chase++ allows a
node to broadcast requirement packet to pull new information
from its neighbor nodes. Specifically, if a node has detected
the concurrent broadcast but not enough encoded payload
block or no preamble packet has been received when detecting
clear channel in listen tail, it will immediately broadcast a
requirement packet which contains the length lcw of contention
window. After receiving the requirement packet, a neighbor
node will initiate a Chase++ broadcast with a random backoff

TABLE I
THE SUMMARY OF SYSTEM PARAMETER SETTINGS

Parameter Description Value
κ RSS threshold of segmentation and clustering 3 dB
∆ threshold of RSS samples of a category 3

Tmax
on−air the maximum on-air time 4096µs

IPPImin the minimum preamble packet interval 4ms
IPPImax the maximum preamble packet interval 12ms
lmac the length of MAC header and footer 13 bytes
B CC2420 radio bandwidth 250kbps
lcw initial length of contention window 20ms

TABLE II
THE PERFORMANCE COMPARISON BETWEEN LR AND LT CODING

 Encoding Time (ms) Decoding Packet # Ave. Tail Length (ms)

LR Coding 2 9.1 97

LT Coding 1 9.9 121

in the range of [0, lcw]. Furthermore, if the node still fails
to recover the original flooding payload, it will exponentially
enlarge the length of the contention window and rebroadcast
the requirement packet. The process is repeated till the node
collects enough encoded payload blocks and successfully
recovers the original flooding payload.

IV. IMPLEMENTATION AND EVALUATION

We implement Chase++ on TelosB node with TinyOS 2.1.2.
We implement the default Box-MAC [10] and Chase [12] as
the layer of LPL concurrent broadcast. Some system parameter
settings are shown in Table I. κ and ∆ are empirically
set. IPPImin is measured in Section IV-B. Tmax

on−air, lmac,
IPPImax and B follow the Zigbee standard, Chase default
setting and CC2420 datasheet. In practice, nodes use pseudo-
random to generate random encoding coefficient matrix and
random IPPI between two adjacent preamble packets. Different
nodes select the different seeds (e.g., node ID) to enhance the
encoding diversity.

We use two testbeds, local testbed (Section II) and Indriya
testbed [16], to evaluate the performance of Chase++. Indriya
testbed has 95 TelosB nodes, which are deployed across three
floors. With much larger deployment scale, the spatial diversity
of Indriya testbed is much higher than that of local testbed.

A. Payload Block Length lp
Here, we evaluate the performance with different short

payload block length lp. As the discussion in Section III-A,
small lp can provide fine-grained control of preamble packet
length, but needs to receive more encoded payload blocks to
construct full rank coefficient matrix in GE decoding. We
randomly select 10 nodes as senders on local testbed. We
randomly select 3 nodes as receivers with different spatial
diversity. We set the transmission power as 5 to ensure every
receiver can hear all 10 senders. We use LR code for encoding.
The total payload length is set 70 bytes. The coefficient δ of
CCR is set as 1. CCR is 1.2 ms in the situation. The batch
size λ is 1, 3, 4, 6 for payload block size 20, 10, 8, and 5,

 95
 100
 105
 110
 115
 120
 125
 130
 135

20 10 8 5

A
ve

ra
ge

 T
ai

l L
en

gt
h

(m
s)

Block Size (bytes)

Rx 1

Rx 2

Rx 3

Fig. 6. The performance comparison with different settings of short payload
block size.

respectively. We repeat 100 times for each setting and measure
the average tail length under different short payload block size.

The evaluation results are shown in Figure 6. We can see
when lp is 10 bytes, the average tail length is the smallest for
all receivers. The reason is that when lp is 20, each preamble
packet contains only 1 payload block. Small preamble packet
length underutilizes the channel resource. When lp is 10, 8 and
5, each receiver need collect more than 7, 9 and 14 encoded
payload blocks (3 preamble packets at least) to construct
full rank coefficient matrix for decoding. The more encoded
payload blocks is needed, the more preamble packets is needed
to decode. Thus, we set lp as 10 bytes for later experiments.

B. Coding Scheme

Both LR and LT codes can serve as the Fountain code
scheme in Chase++. Theoretically, LR code has higher com-
putational cost, but better coding efficiency than LT code. We
take the same experiment setting of Section IV-A and set lp
as 10 bytes. For LT code, the encoding coefficient matrix is
offline generated according to [15]. Its size is 51×32. Hence,
extra 204 bytes storage is needed in LT code. For LR code,
the encoding coefficient matrix is generated in real time. We
compare the performance between these two schemes in terms
of encoding time, the number of received preamble packet for
decoding and tail time.

The experimental results are shown in Table II. The encod-
ing time of LR and LT codes is 2 ms and 1 ms, respectively.
The small encoding time is because the number of encoded
payload blocks (i.e., 3 in this experiment) is small. LT code
almost needs to receive 1 more preamble packet to successfully
decode than LR code. This results that the average tail time
of LT code is 24 ms larger than LR code. Comparing with
LR code, although LT code has better encoding efficiency, tail
length is much longer since the decoding inefficiency. Thus,
we prefer to use LR code scheme in Chase++. The IPPImin

is set as 4ms to contain the encoding time.

C. Concurrent Sender Estimation

We evaluate the accuracy of the concurrent sender estima-
tion on local testbed. We randomly select 2, 4, 6, 8 and 10
senders and set the transmission power as 5. We make each
sender continuously broadcast packet with 40 bytes payload

 0

 1

 2

 3

 4

 5

2 4 6 8 10

E
st

im
at

io
n

er
ro

r

Number of concurrent senders

Fig. 7. The estimation error with different number of concurrent
senders.

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
(m

s)

Payload Length (bytes)

Chase

Chase++

(a) Local testbed

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
(m

s)

Payload Length (bytes)

Chase

Chase++

(b) Indriya testbed

Fig. 8. The comparison of completion time between Chase++ and Chase with different payload
length on different testbeds.

TABLE III
THE PERFORMANCE COMPARISON WITH DIFFERENT δ OF CCR METRIC.

Avg. Tail Length(ms)	
Coefficient	δ	Value	

0.5 1 1.5 2

Local Testbed 148 83.2 99.6 91.1

Indriya Testbed 167.2 121.9 97.2 78.9

	

length. Then, we randomly choose 10 receivers to estimate the
number of concurrent senders. Each receiver runs 100 times
estimation for different concurrent sender situation. In each
estimation, the receivers continuously sample the channel RSS
for 24 ms. Figure 7 shows the distribution of estimation error.
We can see that when the number of concurrent senders is
not larger than 6, the average estimation error is less than
1 and the maximum estimation error is about 2. However,
when the number of concurrent senders is 8 or larger, the
estimation error increases quickly. The maximum estimation
error reaches 5 when 10 concurrent senders exist. The reason
is the increasing of signal overlapping when the number of
concurrent senders becomes large. With more signal overlap-
ping, the weak signals may be hidden behind the strong signal.
Chase++ cannot count these senders whose signals are hidden.
Thus, when the estimated number of concurrent senders is
larger than 6, we conservatively set the number of concurrent
senders as the average neighbor density of the network to
alleviate the estimation error.

D. CCR Coefficient δ

In the calculation of CCR metric (Equation 3), the coeffi-
cient δ indicates the spacial efficiency of capture effect. We
evaluate the influence of different δ on tail length in different
environment (i.e., local testbed and Indriya testbed). In each
environment, we randomly select 10 nodes as senders and 1
node as receiver. The transmission power is 5 and 17 on local
testbed and Indriya testbed, respectively. The receiver can hear
all 10 senders. We use LR code. lp is 10 bytes. The payload
length is 70 bytes. We measure the tail length under four δ
settings 0.5, 1, 1.5 and 2. The result batch size λ is 2, 3, 5
and 6 for a preamble packet. Under each setting, we repeat
the measurement for 100 times.

The experimental results are shown in Table III. We can
see that the worst δ is 0.5 on both local testbed and Indriya

Testbed. The small batch size wastes too much available
channel resource. The optimal δ is 1 and 2 on local testbed
and Indriya testbed, respectively. The difference is incurred by
the different spatial diversity between local testbed and Indriya
testbed. In comparison with local testbed, Indriya testbed has
larger spatial diversity. Consequently, the efficiency of capture
effect is better. Thus, with high spacial diversity, it can further
tolerant the concurrent broadcast of long preamble packet.
Thus, we set δ as 1 and 2 for local testbed and Indriya testbed
for later network flooding experiments.

E. Network Flooding

We evaluate network flooding with different payload length
on the two testbeds. We compare Chase++ with state-of-
the-art concurrent broadcast based asynchronous duty cycle
flooding Chase in terms of completion time. The completion
time indicates the period from the sink initializes the flooding
to the last node successfully receives the flooding payload.
The transmission power is set as 2 and 17 on local testbed
and Indriya testbed, respectively. For each testbed, we repeat
the flooding 100 times.

The reliability of all experiments can reach 100% coverage
on both local testbed and Indriya testbed. Figure 8 shows
the distribution of completion time with different payload
length. On both local testbed (Figure 8(a)) and Indriya testbed
(Figure 8(b)), when the payload length is larger than 20 bytes,
both the maximum and average completion time of Chase++
is less than Chase. The reduction of maximum and average
completion time can reach 23.6% and 24.3% on local testbed,
13.4% and 6.1% on Indriya testbed. This verifies the overall
benefit of Chase++. In comparison with local testbed, the
performance improvement is reduced on Indriya testbed. The
reason is that the better spatial diversity of Indriya testbed
can guarantee the efficiency of concurrent broadcast even with
large preamble packet.

V. RELATED WORK

Wireless network flooding has been widely studied in
the last decade. Many protocols respectively leverage trickle
timer [17], duplicate suppression [7], link quality [8], con-
structive interference [4] [18] and coverage structures [6] to
accelerate network flooding. All of them assume the radio
is always on for every node. However, in most of unat-
tended IoT deployments, duty cycle radio management is

adopted to extend network lifetime. Some works [19] [3] [20]
(called synchronous duty cycle flooding protocols) are based
on synchronized sleep schedule. All nodes simultaneously
and periodically turn their radios on. After a certain period,
they simultaneously turn their radios off. Glossy [4] based
concurrent broadcast is further used to flood data to whole
network. These synchronous duty cycle flooding protocols fit
those applications with periodical flooding demands, but do
not work for irregular flooding requests. In contrast, asyn-
chronous duty cycle flooding protocols are more agile to free
flooding pattern. With the explicit neighbors’ sleep schedule,
opportunistic flooding [21], link correlation aware flooding[22]
and duty cycle aware broadcast [23] [24] are proposed to
improve network flooding efficiency. However, to maintain
all neighbors’ sleep schedule needs extra synchronization or
wake-up beacons. The synchronization error and wake-up
beacon loss reduce the delivery chances. Zippy [25] develops
a sophisticated radio, which can be always on and con-
sume ultra low power to quickly sense the ongoing flooding.
Without modified hardware, Chase [12] further proposes a
completely distributed concurrent broadcast based flooding for
asynchronous duty cycle networks. Based on Chase, our work
further improves the efficiency of concurrent broadcast under
different size of flooding payload.

Fountain code [13] are widely used to improve the effi-
ciency of binary image dissemination. Rateless-Deluge [26]
and SYNAPSE++ [15] use Fountain code to improve the
performance of Deluge [7]. Pando [5] uses Fountain code to
resolve the long-tail problem in constructive interference based
code dissemination Splash [18]. All these protocols assume the
radios of all nodes are always-on. They are hard to directly
be adopted in asynchronous duty cycle networks. Chase++
first introduces Fountain code to accelerate network flooding
in asynchronous duty cycle networks.

VI. CONCLUSION

To conclude, we propose Chase++, a Fountain code based
concurrent broadcast control layer to enable fast flooding
in LPL networks. First, Chase++ uses Fountain code to
convert the long flooding payload to lots of short encoded
payload blocks. Then, according to the sampled RSS sequence,
Chase++ extracts several features to estimate the number
of concurrent senders. Finally, combining concurrent sender
information and encoded payload blocks, Chase++ explores
an empirical metric to determine the optimal preamble packet
length in concurrent broadcast and generates preamble packets.
We evaluate Chase++ on two real testbeds. The experimental
results show the efficiency in terms of completion time.

ACKNOWLEDGEMENT

This study is supported in part by the NSFC programs under
Grant 61472217, 61472219, 61472211, 61722210, 61572277,
61472382, 61379117, 61502271, 61432015, the NSFC key
program under Grant 61532012 and the NSFC Joint Research
Fund for Overseas Chinese Scholars and Scholars in Hong
Kong and Macao under grant 61529202. Jiliang Wang is the
corresponding author.

REFERENCES

[1] C. Zhang, A. Syed, Y. Cho, and J. Heidemann, “Steam-powered sens-
ing,” in Proceedings of Sensys, 2011.

[2] X. Mao, X. Miao, Y. He, X.-Y. Li, and Y. Liu, “Citysee: Urban co 2
monitoring with sensors,” in Proceedings of INFOCOM, 2012.

[3] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “ptunes:
Runtime parameter adaptation for low-power mac protocols,” in Pro-
ceedings of IPSN, 2012.

[4] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Proceedings of IPSN,
2011.

[5] W. Du, J. C. Liando, H. Zhang, and M. Li, “When pipelines meet
fountain: Fast data dissemination in wireless sensor networks,” in
Proceedings of Sensys, 2015.

[6] L. Huang and S. Setia, “Cord: Energy-efficient reliable bulk data
dissemination in sensor networks,” in Proceedings of INFOCOM, 2008.

[7] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proceedings of Sensys,
2004.

[8] W. Dong, Y. Liu, C. Wang, X. Liu, C. Chen, and J. Bu, “Link quality
aware code dissemination in wireless sensor networks,” in Proceedings
of ICNP, 2011.

[9] Z. Li, M. Li, and Y. Liu, “Towards energy-fairness in asynchronous
duty-cycling sensor networks,” ACM Transactions on Sensor Networks,
vol. 10, no. 3, p. 38, 2014.

[10] D. Moss and P. Levis, “Box-macs: Exploiting physical and link layer
boundaries in low-power networking,” Technical Report SING-08-00,
Stanford, 2008.

[11] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “Interference resilient duty
cycling for wireless sensor networks under co-existing environments,”
IEEE Transactions on Communications, 2017.

[12] Z. Cao, D. Liu, J. Wang, and X. Zheng, “Chase: Taming concurrent
broadcast for flooding in asynchronous duty cycle networks,” IEEE/ACM
Transactions on Networking, 2017.

[13] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol.
152, no. 6, pp. 1062–1068, 2005.

[14] M. Luby, “Lt codes,” in Proceedings of FOCS, 2002.
[15] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M. Zorzi,

“Synapse++: Code dissemination in wireless sensor networks using
fountain codes,” IEEE Transactions on Mobile Computing, vol. 9, no. 12,
pp. 1749–1765, 2010.

[16] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, “Indriya: A low-
cost, 3d wireless sensor network testbed,” in TRIDENTCOM, 2011.

[17] P. A. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self regulating
algorithm for code propagation and maintenance in wireless sensor
networks. Computer Science Division, University of California, 2003.

[18] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: fast data dis-
semination with constructive interference in wireless sensor networks,”
in Proceedings of NSDI, 2013.

[19] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proceedings of Sensys, 2012.

[20] L. Zhe-tao, Q. Chen, Z. Geng-ming, C. Young-june, and H. Sekiya, “A
low latency, energy efficient mac protocol for wireless sensor networks,”
IJDSN, 2015.

[21] S. Guo, L. He, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in
low-duty-cycle wireless sensor networks with unreliable links,” IEEE
Transactions on Computers, vol. 63, no. 11, pp. 2787–2802, 2014.

[22] S. Guo, S. M. Kim, T. Zhu, Y. Gu, and T. He, “Correlated flooding
in low-duty-cycle wireless sensor networks,” in Proceedings of ICNP,
2011.

[23] Y. Sun, O. Gurewitz, S. Du, L. Tang, and D. B. Johnson, “Adb:
an efficient multihop broadcast protocol based on asynchronous duty-
cycling in wireless sensor networks,” in Proceedings of Sensys, 2009.

[24] S. Lai and B. Ravindran, “On multihop broadcast over adaptively duty-
cycled wireless sensor networks,” in Proceedings of DCOSS, 2010.

[25] F. Sutton, B. Buchli, J. Beutel, and L. Thiele, “Zippy: On-demand
network flooding,” in Proceedings of Sensys, 2015.

[26] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless deluge:
Over-the-air programming of wireless sensor networks using random

linear codes,” in Proceedings of IPSN, 2008.

